• “No problem can be solved from the same level of consciousness that created it.” – Albert Einstein
OBJECTIVE
• Problem solving requires a creative mind shift.

• One barrier is that the person who needs to solve the problem may be caught up in the firefighting that occurs when a problem explodes.
The objective of this session is to teach you how to:

- quickly identify a problem,
- quickly solve the problem using 5 Why, or
- immediately swarm it using Root Cause Analysis,

and devise and test countermeasures to achieve a Target Condition.
Introductions

Name, Role,
Experience in Problem Solving
(including What’s Not Working)
RESULTS
At the conclusion of this session, attendees will:

- Know how to distinguish between a problem that can be quickly resolved and one that requires deeper analysis
- Know how better to clearly define and state “the problem”
- Know how to employ a method called “5 Why”
- Understand how to employ methods to dig deeper beyond the problem’s symptoms to discover true causes
- Know how to develop and test mitigation measures to solve defined problems
- Know how to employ a method called “Root Cause Analysis” using the fishbone analysis technique.
• Find problem
• Fix problem

then

• Find root cause
• Fix process
High Velocity Edge

Steven J. Spear
What does Spear say?

• Toyota’s people discussed the design and operation of all processes in a patterned way

• Thus, a “Problem Solving Discipline” had been developed … a “template”
• Problem Solving Template
 • Background
 • Current Condition
 • Root-Cause Analysis (Diagnosis)
 • Countermeasure Treatments
 • Target Condition
 • Actual Outcomes
 • Gap Analysis
<table>
<thead>
<tr>
<th>Problem Solving Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Background</td>
</tr>
<tr>
<td>- Why are we concerned about this situation?</td>
</tr>
<tr>
<td>• Current Condition</td>
</tr>
<tr>
<td>- How work is being done and what problems (symptoms) are occurring?</td>
</tr>
<tr>
<td>• Background</td>
</tr>
<tr>
<td>• Current Condition</td>
</tr>
<tr>
<td>- Root-Cause Analysis(Diagnosis)</td>
</tr>
<tr>
<td>- Countermeasure Treatments</td>
</tr>
<tr>
<td>• Target Condition</td>
</tr>
<tr>
<td>• Actual Outcomes</td>
</tr>
<tr>
<td>• Gap Analysis</td>
</tr>
</tbody>
</table>
Seeing Problems

• How do you “see” a problem on a project?
• What prevents clear vision of a problem?

• What is the role of:
 • Emotion
 • Background static

• How can you quickly identify and flush out a problem from the background static of a project?

© 2011-16, The ReAlignment Group
Seeing Problems

At Alcoa, Capability 1:

• “If you do not see a problem when and where it occurs and swarm it to investigate it, much of the information needed to understand it will perish, spoil, fade and dissipate.
 • Once that happens, it becomes impossible to re-create the problem, nail down what caused it, and take corrective measures that will prevent its recurrence.”
Seeing Problems

• “By seeing problems and solving them in an accelerated fashion, Alcoa was building process knowledge that was not only hard won, but also scarce and proprietary – unavailable to outsiders who did not make the same efforts.”
Seeing Problems

“Seeing problems was the prerequisite for the highspeed *kaizen* (‘continuous improvement’) for which Toyota came to be so highly regarded.”
Seeing Problems

• Use Visual Management and Weekly Work Planning to make problems visible early, quickly identifying and addressing even minor deviations from plan.
• Problem Definition – water shortage:

• (1) “We need sufficient water to maintain the current lifestyle”

or

• (2) “We need to design effective means to curb the potable water shortage”
• Problem Definition
 • (1) “We need more water to maintain the current lifestyle”
 • Sample solution: design an economical system for converting waste water to potable water
 • **ERGO: Poor definition** – misdirects and narrowly focuses the problem solution search
 • focuses on one solution for supply
Problem Definition

(2) “Design effective means to curb the potable water shortage”

- Focuses on functional behavior not a specific solution
- Focuses on the source of the problem

ERGO: Good definition

- Leaves open solutions addressing both supply and demand
• Problem Solving Template
 • Background
• Current Condition
 • Root-Cause Analysis (Diagnosis)
• Countermeasure Treatments
• Target Condition
• Actual Outcomes
• Gap Analysis
Current Condition

• What is the value of describing – succinctly – the Current Condition?
 • How work is being done and what problems (symptoms) are occurring?
Discussion

• How can you distinguish between a problem that can be quickly resolved and one that requires deeper analysis?

• Here’s a simple “5 Why” method of problem solving and risks
5 Why
5 Why

The vehicle will not start. (the problem)

① Why? - The battery is dead. (first why)
② Why? - The alternator is not functioning. (second why)
③ Why? - The alternator belt has broken. (third why)
④ Why? - The alternator belt was well beyond its useful service life and not replaced. (fourth why)
⑤ Why? - The vehicle was not maintained according to the recommended service schedule. (fifth why, a root cause)
Only 5 Whys?

⑥ Why? - Replacement parts are not available because of the extreme age of the vehicle. (sixth why, optional)

- Start maintaining the vehicle according to the recommended service schedule. (5th Why solution)
- Purchase a different vehicle that is maintainable. (6th Why solution)
• Risks/Deficiencies in 5 Why
 • 5-Whys tends to allow people to miss multiple causal factors.
 • Tendency for investigators to stop at symptoms rather than going on to lower level root causes.
 • Inability to go beyond the investigator's current knowledge - can't find causes that they don't already know.
 • Lack of support to help the investigator to ask the right "why" questions.
• Risks/Deficiencies in 5 Why
 • Results aren't repeatable - different people using 5 Whys come up with different causes for the same problem.
 • Tendency to isolate a single root cause, whereas each question could elicit many different root causes.

• Einstein: “No problem can be solved from the same level of consciousness that created it.”
Discussion

• How do you use 5 Why now?

• How can you use 5 Why next week?
Barriers to Problem Solving
• Barriers
 • Simplistic thinking: missing multiple causal factors.
 • Stopping at symptoms rather than going on to lower level root causes.
 • Limits of the investigator's current knowledge.
 • Push to hurry up and solve the problem.
 • Addiction to being a “fire fighter”.
 • What else?
Discussion

“It’s not that I’m so smart, it’s just that I stay with problems longer.... One should look for what is, and not for what one thinks should be.”

– Albert Einstein
• Problem Solving Template
 • Background
 • Current Condition
• Root-Cause Analysis (Diagnosis)
 • Countermeasure Treatments
 • Target Condition
 • Actual Outcomes
• Gap Analysis
Root Cause Analysis (RCA)
Root Cause Analysis

• Primary aim: to identify the factors that resulted in
 • the nature
 • the magnitude
 • the location and
 • the timing
• of the harmful outcomes (consequences) of one or more past events.

• Thus to identify what
 • behaviors
 • actions
 • inactions or
 • conditions
• that need to be changed to prevent recurrence.

• And to identify the lessons to be learned.
Fishbone Diagram (Ishikawa)
Root Cause Analysis

• "Success" is defined as the near-certain prevention of recurrence.
• Find problem
• Fix problem
• Find root cause
• Fix process

© 2011-16, The ReAlignment Group
• RCA must be performed **systematically**, usually as part of an **investigation**, with conclusions and root causes identified backed up by **documented evidence**.

• Usually a team effort is required.

• There may be **more than one root cause** for an event or a problem.

• The tough part:
 • **Persistence**
 • **Sustained effort** required to develop them.
 • **Getting people to show up**.
Root Cause Analysis Basics

Symptom of the problem.
“The Weed”
Above the surface (obvious)

The Underlying Causes
“The Root”
Below the surface (not obvious)

The word root, in root cause analysis, refers to the underlying causes, not the one cause.
• RCA’s initial needs:
 • Effective **problem statements** and **event descriptions** (as failures, for example)

 • **sequence of events** or **timeline**
 • to understand the relationships between contributory (causal) factors, root cause(s) and the defined problem or event to prevent in the future.
The Process of RCA
RCA Process Steps

1. Define the problem (describe the event)
2. Gather data and evidence
3. 5 Whys
4. Classify causes into causal factors
5. Reveal multiple root causes
6. Identify all harmful factors (might be causes)
7. Identify corrective actions & solutions
8. Implement them – PDCA
Plan

Do

Act

Check

© Lean Construction Institute
Let’s Do It!
RCA Process Steps

1 Define the problem (describe the event)
2 Gather data and evidence
3 5 Whys
4 Classify causes into causal factors
5 Reveal multiple root causes
6 Identify all harmful factors (might be causes)
7 Identify corrective actions & solutions
8 Implement them – PDCA
1 - Define the Problem

• Include attributes (properties) of the harmful outcomes, both:
 • Qualitative
 • Quantitative

• This usually includes specifying the
 • Natures
 • Magnitudes
 • Locations
 • Timings

© 2011-16, The ReAlignment Group
1 - Define the Problem

REMEMBER:

• A good definition leaves open solutions for addressing the problem
 • Eg. in our water shortage example: both supply and demand
RCA Process Steps

1. Define the problem (describe the event)

2. Gather data and evidence

3. 5 Whys

4. Classify causes into causal factors

5. Reveal multiple root causes

6. Identify all harmful factors (might be causes)

7. Identify corrective actions & solutions

8. Implement them – PDCA

© 2011-16, The ReAlignment Group
2 – Gather data & evidence

• Along a timeline of events
 • Classify the data and evidence to the final failure or crisis
• Specify in the "timeline" what should have been when it differs from the actual
 • For every behavior, condition, action, and inaction
Elements of Data & Evidence

1. Materials
2. Manpower
3. Machines/Equipment
4. Environment
5. Management
6. Methods
7. Management System
RCA Process Steps

1. Define the problem (describe the event)
2. Gather data and evidence
3. 5 Whys
4. Classify causes into causal factors
5. Reveal multiple root causes
6. Identify all harmful factors (might be causes)
7. Identify corrective actions & solutions
8. Implement them – PDCA
3. **5 Whys**

- **Ask "why"**
 - identify the causes associated with each step in the sequence towards the defined problem or event.
- **"Why" is taken to mean**
 - "What were the factors that directly resulted in the effect?"
RCA Process Steps

1. Define the problem (describe the event)
2. Gather data and evidence
3. 5 Whys
4. **Classify causes into causal factors**
5. Reveal multiple root causes
6. Identify all harmful factors (might be causes)
7. Identify corrective actions & solutions
8. Implement them – PDCA
4 - Classify

- Classify causes into causal factors that relate to an event in the sequence, and root causes, that if applied can be agreed to have interrupted that step of the sequence chain.

Level 1 Causes:

1. Materials
2. Manpower
3. Machines/Equipment
4. Environment
5. Management
6. Methods
7. Management System
Level 2 Causes

Processes for providing a given resource.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Research</td>
</tr>
<tr>
<td>B</td>
<td>Design/Specify</td>
</tr>
<tr>
<td>C</td>
<td>Select</td>
</tr>
<tr>
<td>D</td>
<td>Submit</td>
</tr>
<tr>
<td>E</td>
<td>Approve</td>
</tr>
<tr>
<td>F</td>
<td>Procure/Order</td>
</tr>
<tr>
<td>G</td>
<td>Schedule</td>
</tr>
<tr>
<td>H</td>
<td>Inspect</td>
</tr>
<tr>
<td>I</td>
<td>Train</td>
</tr>
<tr>
<td>J</td>
<td>Delivery/Communicate</td>
</tr>
<tr>
<td>K</td>
<td>Maintain</td>
</tr>
<tr>
<td>L</td>
<td>Store/Handle</td>
</tr>
<tr>
<td>M</td>
<td>Release to activity</td>
</tr>
<tr>
<td>N</td>
<td>Supervise</td>
</tr>
<tr>
<td>O</td>
<td>Improve</td>
</tr>
<tr>
<td>P</td>
<td>Install</td>
</tr>
<tr>
<td>Q</td>
<td>Execute</td>
</tr>
<tr>
<td>R</td>
<td>Motivate/Expedite</td>
</tr>
<tr>
<td>S</td>
<td>Other</td>
</tr>
</tbody>
</table>
Level 3 Causes
More specific characteristics of resource breakdowns.

- Skill
- Capability
- Knowledge
- Amount
- Defect/Damage
- Space
- Access
- Conditions of Satisfaction
- Layout
- Layout information
- Layout method
- Procedure
- Location
- Ambiguous
- Safe
- Stressed
- Other
Common Cause
Combination of 2 or 3 levels using numbers and letters.

- **B1n** – Design/Specification of the Rebar was Ambiguous
- **B4o** – Design/Specification of the concrete pour platform was not safe
- **G2** – Crew was not scheduled
- **B6g** – Did not Design Access to the workspace
- **F3d** – Did not Order enough Hammers
- **J1m** – Risers were Delivered to the wrong floor

© 2011-16, The ReAlignment Group
Fishbone Analysis

• Fishbone analysis
 • Ishikawa diagram
 • Herringbone diagram
 • Cause-and-effect diagram
 • Fishikawa

• Strongest causes
 • Prioritize
 • Solutions & Prevention

© 2011-16, The ReAlignment Group
Fishbone Diagram (Ishikawa)
RCA Process Steps

1. Define the problem (describe the event)
2. Gather data and evidence
3. 5 Whys
4. Classify causes into causal factors
5. **Reveal multiple root causes**
6. Identify all harmful factors (might be causes)
7. Identify corrective actions & solutions
8. Implement them – PDCA
5 – Reveal Multiple Root Causes

- If there are multiple root causes, which is often the case, reveal those clearly for later optimum selection.
- Identify all other harmful factors that have equal or better claim to be called "root causes."
RCA Process Steps

1. Define the problem (describe the event)
2. Gather data and evidence
3. 5 Whys
4. Classify causes into causal factors
5. Reveal multiple root causes
6. Identify all harmful factors (might be causes)
7. Identify corrective actions & solutions
8. Implement them – PDCA

© 2011-16, The ReAlignment Group
Common Cause
Combination of 2 or 3 levels using numbers and letters.

- B1n – Design/Specification of the Rebar was Ambiguous
- B4o – Design/Specification of the concrete pour platform was not safe
- G2 – Crew was not scheduled
- B6g – Did not Design Access to the workspace
- F3d – Did not Order enough Hammers
- J1m – Risers were Delivered to the wrong floor
• Problem Solving Template
 • Background
 • Current Condition
 • Root-Cause Analysis (Diagnosis)

• Countermeasure Treatments
 • Target Condition
 • Actual Outcomes
 • Gap Analysis
RCA Process Steps

1. Define the problem (describe the event)
2. Gather data and evidence
3. 5 Whys
4. Classify causes into causal factors
5. Reveal multiple root causes
6. Identify all harmful factors (might be causes)
7. Identify corrective actions & solutions
8. Implement them – PDCA
7 – ID corrective actions

- Identify corrective action(s) that will with certainty prevent recurrence of each harmful effect, including outcomes and factors.
- Check that each corrective action would, if pre-implemented before the event, have reduced or prevented specific harmful effects.
8 – Implement them

• Implement the recommended root cause correction(s).
• Ensure effectiveness by observing the implemented recommendation solutions.
• Evaluate
• Adjust

© 2011-16, The ReAlignment Group
Problem Solving Template

- Background
- Current Condition
- Root-Cause Analysis (Diagnosis)
- Countermeasure Treatments
- Target Condition
- Actual Outcomes
- Gap Analysis
Target Condition

• Target Condition:
 • “How work is expected to proceed with the countermeasures in place and the problems treated.”

• Discussion
 • What is the value of defining the Target Condition?
 • How does it compare to Current Condition?
 • When should you define the Target Condition?
Actual Outcomes

• Monitor and measure the countermeasures, changes and proposed solutions.
Gap Analysis

• Measure the metrics of the “Target Condition” against the “Actual Outcomes”

• Is there a “Gap”?

• Why?
 • 5 times
 • Or update the RCA

• Identify and address the other instances of each harmful outcome and harmful factor.
DISCUSSION

• How and when should you track and report on Actual Outcomes and Gap Analysis?
Final Thoughts

• The purpose of identifying all solutions to a problem is to prevent recurrence at lowest cost in the simplest way. If there are alternatives that are equally effective, then the simplest or lowest cost approach is preferred.
Final Thoughts

• Root cause analysis can help to **transform a reactive culture** (that reacts to problems) into a forward-looking culture that solves problems before they occur or escalate.

• More importantly, it **reduces the frequency of problems** occurring over time within the environment where the RCA process is used.
Final Thoughts

• RCA is a threat to many cultures and environments. **Threats to cultures often meet with resistance.**

• There may be other forms of management support required to achieve RCA effectiveness and success. For example, a "non-punitive" policy towards problem identifiers may be required.
• Did we meet our objective?
 • To teach you how to:
 • quickly identify a problem,
 • quickly solve the problem using 5 Why, or
 • immediately swarm it using Root Cause Analysis,
 • and devise and test countermeasures to achieve a Target Condition.
Do you:

• Know how to distinguish between a problem that can be quickly resolved and one that requires deeper analysis?
• Know how better to clearly define and state “the problem”?
• Know how to employ a method called “5 Why”?
• Understand how to employ methods to dig deeper beyond the problem’s symptoms to discover true causes?
• Know how to develop and test mitigation measures to solve defined problems?
• Know how to employ a method called “Root Cause Analysis” using the fishbone analysis technique?